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Most people have an at least basic knowledge about the idea of 
mean or average value although there are several such measures 
used in e.g. newspapers or other media.  
However, for the professional statistical work a vague notion is not 
enough and therefore we put a lot of emphasis on this subject. Also 
the idea of a measure for spread is accepted but not so commonly 
seen in daily life. This measure is more mathematical but necessary 
for a proper analysis. 
As soon as statistics is applied to practical problems the need for 
combination of variables becomes a reality. This is not so obvious to 
the inexperienced user but still a fact. Because of this, we describe 
the theoretical and practical consequences and illustrate with a num-
ber of real examples. 
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4.1  Mean value and standard deviation 
When working with theoretical as well as practical statistical analysis, there is 
often a need to reduce the data or the process to just a few, well chosen 
numbers. We introduce two such numbers, the mean value and the standard 
deviation where the first is a value of location and the second is a value of 
variation.  
These two measures are referred to as parameters and we will discuss their 
theoretical features as well as ways to estimate them from a set of data. In 
order to set the scene we first introduce some important statistical concept 
namely random variable, probability, and estimation along together with some 
vocabulary.  
The idea to use just the mean and standard deviation to describe a process 
does not imply that we throw away, or do not use, other features of the pro-
cess. Furthermore, calculating the average value (in order to estimate the 
mean value) does not imply that we are not interested in the original data. On 
the contrary, the original data will be used over and over again. 

4.1.1  Mean value 
Random variable 
In advanced books about statistics the expression random variable is described as a func-
tion. However, we prefer to introduce it by some examples. Imagine for example that we 
study the number of phone calls per hour to a telephone exchange. Obviously this 
number varies from hour to hour. If we study the weight of people we will find that it 
varies from person to person and if we study the time it takes to perform a certain task on 
the computer we will also find a variation. 
There is a lot of things to be said about each example. Firstly, it must of course be 
possible to measure the variation, i.e. the measuring device must be accurate enough. 
Maybe a lot of the variation can be explained quite easily: the number of phone calls per 
hour is most likely different in the middle of the night compared with working hours, the 
weight depends on the height, age, and sex of the person, the traffic load on the computer 
can be different in the morning compared to the evening etc.  
Despite these explainable differences (that have to be proven) there is still a variation in 
e.g. length of grown men of the same age. Maybe it is possible to argue that even these 
differences are explainable: different heritage, different food, different living conditions, 
etc. Sometimes it is interesting to science to try to find (and prove) such background 
causes, but sometimes we have to be satisfied with describing the random variable by its 
mean value and standard deviation. (Usually a random variable has to be described in 
more ways but we leave this to chapter 7 and 8.) 
 
 

Vocabulary 
We will use upper case letters to designate random variables e.g. X, Y, Z, W. Behind each 
such letter there is a hopefully well defined text string that fully describes the random 
variable such as "number of incorrect items in a box of 200 items", "number of incorrect 
statements in a program of 2 000 statements", "number of phone calls during 10 minu-
tes", "time for an order to go from point A to point B" etc. The first examples designate 
what we later will call discrete variables and the last example is called a continuous 
variable. 
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Probability 
In chapter 6 we will introduce the concept of probability and we will then write things 
like P(X = x), P(Y ≤ y), P(Z > z) etc. These expressions will be read "the probability that 
the variable X will be equal to the value x", "the probability that the variable Y will be 
equal to or less than the value y", "the probability that the variable Z will be greater than 
the value z". We will give mathematical formulas to calculate the probability in several 
cases and then, of course, we will use numbers instead of x, y and z.  
Once given the probability of certain events, we will be able to calculate many useful 
pieces of information about the actual situation. These formulas will include some para-
meters (another word is constants) and these will generally be designated by Greek 
letters like λ, σ, µ, etc. However, behind these Greek letters there is a real number. The 
vocabulary described here is fairly universal in the literature and should not give any 
trouble after some practice. 
 
 

Estimation 
In statistics the word estimation is used frequently. The subject is an enormously large 
area, with many difficulties of statistical and mathematical nature, but the basic ideas are 
fairly simple even if it takes a bit to get used to. E.g. the true mean value of a random 
variable is something that we never will be able to calculate from sample data. When we 
calculate the average of a sample we estimate the true mean value. All parameters, as 
mentioned above, has to be estimated in some way or another by calculations on data. 
However, because of the randomness we will never be able to state that we know the 
value of a certain parameter. The mathematical and statistical difficulties concerns things 
like 'what constitutes a good estimate?' or 'how should the data be used in the most 
efficient way?'. We will not discuss such features here. We will only show, by simu-
lations, that there are different ways, with different good or bad sides, for estimation. 
 
 

Example 1 – Time to completion 
An organisation governs the time it takes to complete a certain task. The time necessary 
is measured in hours and the main interest is to find the mean time. The mean value can 
be utilised in several ways. One way is to monitor the mean value to see that it does not 
increase and another way is to use the mean to estimate costs in other similar tasks. 
 
 

Example 2 – Transportation 
A furniture retailer offers the customers a transportation of their new furniture for a 
certain fee. Of course the fee must be calculated in such a way that it covers the costs. 
The retailer is therefore interested in the mean value of the transportation cost. 
 
 

Example 3 – Insurance 
Every insurance company is interested in the mean values of several random variables 
such as mean number of traffic accidents during a year or mean number of injured people 
in an accident. The idea is of course to be able to set the fees properly. 
 
 

Example 4 – The quality process 
The quality of a process or a product is measured in many ways. E.g. in the manu-
facturing of electronic equipment there is a large number of variables that the manu-
facturer and the customer find important. These variables are often described by their 
mean values. 

%Prob1 
%Prob2 
%Prob3 
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Example 5 – The development of software  
The development of software is also full of questions that can be raised and handled in 
the context of random variables: 
 

• mean time to completion of certain jobs 
• mean time of testing 
• mean number of remaining faults after test 
• mean time for fault finding, mean backlog of trouble reports 

 
The main purpose is of course to follow up results, to see that actions taken really 
improve quality and productivity, etc. 
 
 

Example 6 – The maximum value, a counter example 
Sometimes one is not interested in the mean value of a random variable but rather some 
other characteristic such as the maximum value. One common example is the 'taxi-
problem'. A professor arrives to the railway station in a city. He stands outside the main 
building and sees the taxis driving past. He notes the number of the taxi on the special 
number plate used only by taxis. After a while he produces an estimate of the total 
number of taxis in the city. As a matter of fact, this technique was used to estimate the 
number of enemy aircraft during the 2nd World War.  
 
 

Calculation of the average value as an estimate of the mean value 
The true mean value of a random variable is calculated on theoretical grounds. We will 
defer that calculation to chapter 7 when we start dealing with distributions. The literature 
uses the Greek letter µ with some index to designate the (true) mean value. Another com-
mon way is to use E (for expectation). Thus the vocabulary will be: 
 
 

€ 

µY = E(Y )     

€ 

µX = E(X)      

€ 

µZ = E(Z) 
 
 
 

Here we will introduce the average value, calculated from a sample. The average will be 
at least approximate equal to the true mean: 
 

€ 

x ≈ µ  

The average value  (pronounced "x-bar") is a simple calculation: 

€ 

x =
xi∑

n
 

 

In words this formula reads: "Sum all the figures and divide by the sample size n". 
Assume that we have the following 12 values measured in hours: 
 

2.41 2.39 2.42 2.37 2.40 2.35 2.36 2.38 2.37 2.34 2.38 2.39 
 

What will the average be? Using the formula we get the following: 
 

€ 

x =
xi∑

n
=
2.41+ 2.39 + 2.42 + 2.37 + 2.40 + ...+ 2.38 + 2.37 + 2.34 + 2.38 + 2.39

12
= 2.38

 
 

Thus the average value of the 12 values is 2.38 hours. 
 

  Input Answer 
 x1 = 5.2 x2 = 2.2 x3 = 9.8 x4 = 3.6 

€ 

x = 5.2  
 x1 = 0.25 x2 = 0.27 x3 = 0.38 x4 = 0.32 

€ 

x = 0.305  
 x1 = 12.2 x2 = 13.4 x3 = 12.8 x4 = 11.6 

€ 

x =12.5  
 

%MinMax 
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Some concluding notes 
To the beginner there is a bit of confusion about the difference between the average and 
the mean values. The average is calculated from a limited number of numeric values 
(limited as opposite to unlimited) while the true mean is calculated on theoretical grounds 
(chapter 7). The average is an estimate of the true mean and we will later have a 
discussion how good the estimates are (chapter 9). 
However, in statistical work the true mean is used for e.g. modelling purposes. When 
modelling, one can use a numerical value for the mean value obtained from a large 
sample. Of course, it would be possible to assign any realistic value to the mean just for 
modelling or simulating purposes: 
 

• "What happens to the total testing time if the mean fault rate is such and such and 
the mean block size is such and such?" 

• "Let's say that the mean incoming number of customer complaints per week is   µ1 
and the mean number of customer complaints handled per week is   µ2. How will 
the mean back log (i.e. unanswered customer complaints) change?" 

 

Statistical work is full of such ideas and questions. 

4.1.2  Standard deviation 
The standard deviation is the most common way to measure the spread of a random 
variable. From a sample of data we calculate the sample standard deviation according to 
the formula below. The sample standard deviation, or standard deviation only, is 
designated by s and is an estimate of the true standard deviation, that is designated by σ. 
The true standard deviation is calculated on theoretical grounds and we leave that to 
chapter 7. 
Actually, there is another measure of spread that is the very base for all statistical ana-
lysis namely the variance. The variance is the measure with all the nice mathematical 
features but unfortunately for us human beings it gives us the numerical results in a 
strange way: if the studied variable concerns number of faults, the average is given in 
number of faults but the variance is given in number of faults squared, or if the variable is 
reported in hours, the average is given in hours but the variance will be stated in hours2. 
If we take the square root of the variance we get the standard deviation. 
 

Vocabulary 
In the literature, the most common designation for the standard deviation and the 
variance will be seen in the following table: 
 
 

 Common Less common 

Sample standard deviation s  

True standard deviation σ S(X) 

Sample variance s2  

True variance σ2, V(X) v 
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Calculation of the variance and standard deviation 
The true standard deviation and the true variance of a random variable is calculated on 
theoretical grounds. We will show some examples in chapter 8 when dealing with the 
different features of statistical distributions. However, the sample standard deviation s, 
calculated via the formula below, is an estimate of the true standard deviation σ: 

€ 

s ≈σ  
 

The formula used to calculate the standard deviation looks a bit awkward at first sight: 

€ 

s =
(xi − x )2∑
n −1

 

 

In words it can be described as follows. 
 
 

After calculating the average, we do as follows: 
 

• calculate the distance from each value to the common average ⇒ 

€ 

(xi − x )  

• square this value ⇒ 

€ 

(xi − x )2  

• Sum all the squared values ⇒ 

€ 

(xi − x )2∑  

• Divide by n – 1 (n = sample size) to get the sample variance ⇒ 

€ 

(xi − x )2∑
n −1

 

• The square root gives the sample standard deviation ⇒ 

€ 

(xi − x )2∑
n −1

 
 

Thus the complete formula for the sample standard deviation is: 
 

€ 

s =
(xi − x )2∑
n −1

 

 
 
 

Assume that we use the same 12 figures as for the calculation of the average: 
 

2.41 2.39 2.42 2.37 2.40 2.35 2.36 2.38 2.37 2.34 2.38 2.39 
 
What will the standard deviation be? Using the formula we get the following (remember 
that the calculated average is 2.38 hours): 
 

€ 

s =
(2.41− 2.38)2 + (2.39 − 2.38)2 + ...+ (2.39 − 2.38)2

12 −1
=

0.0062
11

≈ 0.0237 hours

 
 

Thus the standard deviation, calculated from the 12 values, is 0.0237 hours. 
 

  Input Answer 
 x1 = 5.2 x2 = 2.2 x3 = 9.8 x4 = 3.6 s = 3.30 
 x1 = 0.25 x2 = 0.27 x3 = 0.38 x5 = 0.32 s = 0.058 
 x1 = 12.2 x2 = 13.4 x3 = 12.8 x5 = 11.6 s = 0.775 
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Some concluding notes 
In most textbooks one can find other formulas to calculate the standard deviation. 
Although these stem from the formula above and give exactly the same result, they are 
considered to be simpler to use when doing the calculations by hand or using only a 
simple pocket calculator. However, when using these formulas, all resemblance with the 
original definition is lost. From the formula used above, one can, at least after some 
guidance, see that the variance is the average squared deviation from the mean value. 
Thus the variance is in some sense an average value. The small examples above are just 
for the reader to test the understanding of the mechanics of the calculation of the standard 
deviation. 
The average value and the standard deviation are two figures calculated from the data. 
However, before these values can come into practical use, they must be put into some 
further context, i.e. the context of statistical distributions. We return to this most impor-
tant idea in chapter 7. We just want the reader to have some patience and ask him to 
make sure that he knows and understands how to calculate the two values.  
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4.1.3  Summary of mean value and standard deviation 

The average value 
 

 

€ 

x =
xi∑

n
   estimates  µ 

 
 

 

The standard deviation 
 

 

€ 

s =
(xi − x )2∑
n −1

 s  estimates  σ 

 

 

 xi = the individual values 
 n = the number of values 
 µ = the true mean value of the process 

 σ = the true standard deviation of the process 
 
 µ and σ are calculated on theoretical grounds. See e.g. '7.1.2 Summary of…' 
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The dictionary is the only place where success  
comes before work. 
Mark Twain 
 
 

Do not let what you cannot do interfere with what you can do. 
John Wooden 
 
 

Success usually comes to those who are too busy  
to be looking for it. 
Henry David Thoreau  
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4.2  Linear combinations of variables 
In (4.1) we introduced the idea of random variables, mean value and standard 
deviation. However, as soon as one starts with practical use of statistical 
analysis, life becomes more difficult and interesting. One will come across the 
problem of combining variables in the same problem. The type of combination 
that we treat here is linear, i.e. sums and differences of variables. Such a sum 
is of course also a variable and its mean and standard deviation can be calcu-
lated from the terms in the combination.  
There are of course other types of combinations of variables such as non-
linear or a mixture of linear or non-linear or combinations where also the 
number of terms is a variable. We show some short examples of these latter 
types in this section but we concentrate on common linear combinations. 

4.2.1  Mean value of linear combinations of variables 
Example 1 – Humidity and temperature 
In the manufacturing of electronic components there are many photo processes in order 
to develop the fine pattern used in the components of electronic hardware. In the booklet 
KODAK ACUMAX Products (appendix D page 33) there is a table that shows how the 
length of the photo negative changes when the humidity and temperature changes. Thus 
the change in length is a combination of the two variables humidity and temperature. 
With some arithmetic (we used regression analysis) this table can be reduced to a simple 
formula where 
 

• Y is the change in thousands of an inch (over a distance of 24 inches), 
• Rh is the change in relative humidity in per cent, 
• T is the temperature change in degrees Fahrenheit. 

 

The formula becomes 

€ 

Y = 0.264⋅ Rh + 0.240⋅ T  
 

and we see that Y is a linear combination of the two variables Rh and T. However, if we 
want the formula to express the change in length in millimetres and the temperature in 
centigrade, the formula has to be recalculated. It then becomes 
 

€ 

Y = 0.00671⋅ Rh + 0.0110⋅ T  
 

The question is: what will the mean value and the standard deviation be for Y if these two 
values are known for Rh and T? Before we enter that discussion we have some more 
examples. 
 
 

Example 2 – Total time (I) 
If we study the total time T it takes to perform a certain task, whether it be to manu-
facture an item or to develop a software program, we often find that the times vary. One 
explanation is that the task is made up by a number of subtasks Si connected in series. T 
can then be regarded as a linear combination of subtasks. If the time for each subtask is 
constant then of course the total time is just a constant without variation. But most likely 
the subtasks have a variation and thus we can express it using the ideas of random 
variable, mean value and standard deviation. Let us assume that we have four subtasks. 
We can then state the relationship between T and Si in the following way: 
 

€ 

T = S1 + S2 + S3 + S4  
 

 

%LinC 
%Die 
%CLT 
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Example 3 – Total number of lines per day (I) 
Suppose that a department that produces software has a fixed number of programmers. 
Let us call this number n. Assume that we want to model the total number of lines of 
code Y that is produced during a day. Every programmer does not produce, by some 
reason or other, the same number of lines per day. Therefore, let us consider the number 
of lines per day per programmer as a random variable X. This means that the total 
number of lines in a certain day is a linear combination (in this case a sum) of n random 
variables. The model is then 
 

  

€ 

Y = X1 + X2 + X3 +…+ Xn  
 
 

Example 4  – Total number of lines per day (II) 
Suppose that the number of available programmers varies (maybe more realistic) and we 
regard this number as a random variable N. N is the number of available programmers on 
a given day. Here Y is a linear combination of a random number of random variables: 
 

  

€ 

Y = X1 + X2 + X3 +…+ XN  
 

This model is also valid for the situation describing manufacture where N is the number 
of orders per day and X is the number of items per order and thus Y is total number of 
items to be delivered per day. A common servicing situation can also be described with 
this model. N is the number of customers per day and X is the time spent by each 
customer. Y is thus he total time spent for service per day. 
 
 

Example 5 – Pythagoras' Theorem 
Numerous situations in industry and science can be handled using Pythagoras' theorem. If 
we have two random variables X and Y and apply the theorem we get 
 

€ 

Z = X 2 +Y 2  
 
 

and Z is certainly not a linear combination of X and Y. 
 
 

Example 6 – Electronic circuitry 
In electronic circuits there are a lot of statistics and mathematics. Lets say that we have 
three resistors A, B and C connected according to figure 4.2.1. We regard their resistance 
RA, RB, and RC as random variables with different parameters. What parameters will the 
total resistance R obtain? 
 

 

 

Figure 4.2.1 Three resistors in a circuit. What 
parameters will the total resistance get? 

 
 

First we construct the proper formula (model) for the assumptions. Some arithmetic gives 
that R is the following: 
 
 

€ 

R =
RA ⋅ RB

RA + RB

+ RC                                       

  

€ 

R =
RA ⋅ RB

RA + RB
RD

! " # $ # 
+ RC = RD + RC    

 

R is not a linear combination of RA, RB, and RC but if we can replace the first term by, say 
RD, and find the parameters of RD we find that R is a linear combination of RD and RC as 
in the expression to the right. Finding the parameters of RD can be more or less easy. 
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Example 7 – Total time (II) 
In industry there are many models that describe the times of operations necessary to 
complete a task. Suppose that we have the operations A, B, C, D, and E. TA to TE are also 
the random variables that describe the time it takes for each operation. Figure 4.2.2 
shows how the operations are connected i.e. B, C, and D are parallel and the flow can not 
continue until all the operations of B, C, and D are finished. 
 

 

 
 
Figure 4.2.2 Five operations. What parameters 
will the total time get? 

 

The total time T then becomes:  

€ 

T = TA +max(TB ,TC ,TD ) +TE  
 

'max(TB, TC, TD)' means that the maximum of the three variables 'sets the pace'. In this 
case we have to find the mean for this maximum but after doing that, we are back to a 
linear combination of three variables. (To find the mean of max(TB, TC, TD) is not an easy 
task. We can use tricky mathematics or we can simulate the model.) 
 
 

Example 8 – Measurements 
A measurement always contains an error and very often we can consider the error as a 
random variable. If we assume the error to have the same mean and standard deviation 
irrespective of the size of the value that we want to measure (the real value), we have the 
following model: 
 

Measured value = Real value + error 
 

Here we regard Real value as a random variable. We also assume that the variables are 
independent. If we have knowledge of the parameters of Measured value and the error, 
then we can estimate the variation in the Real value, an often interesting question. 
 
 

 
A linear combination of variables. (See the macro %LinC.) 

%LinC 



 4 Mean value and standard deviation 
  Linear combinations of variables 

Ing-Stat, www.ing-stat.se 4 – 54 

 
Example 9 – Trouble reports 
A department receives trouble reports from the field regarding malfunctions of some 
software or electronic equipment. If we regard the stream of incoming reports per week 
as a random variable X and the number of handled reports per week as another random 
variable Y then we can state that the difference D is a random variable: 
 
 

€ 

D = X −Y  
 
 
 

Let us assume that the department starts with a fixed number k of trouble reports. After 
four weeks we expect the following number T of unanswered reports: 
 
 

€ 

T = k + X1 −Y1 + X2 −Y2 + X3 −Y3 + X4 −Y4 = k +D1 +D2 +D3 +D4  

 
 

If the expected value of Y is larger than the expected value of X, then the true mean of T 
will decrease week by week. In addition, the model above is only valid as long as the 
number of unanswered trouble reports is more than zero. (After that, the situation 
becomes more complicated). 
 
 

Summary of the examples 
Before going into the details of calculating the parameters of combination of variables we 
summarise the examples.  
 

 Example Type Further info 
 1 Linear Ch 4 
 2 Linear 
 3 Linear 
 8 Linear 
 9 Linear 
 4 Non-linear "Combinations of variables.doc" 
 5 Non-linear  
 6 Mixture The macro %Mix, "A mixture of variables.doc" 
 7 Mixture  
 
 

All the examples above relate to what we call models (see chapter 5). In that chapter we 
will discuss deterministic models as well as statistical models. In some of these models 
we will state clearly what variables will be included. In some situations however, we do 
not know exactly what variables should be a part of the model; the analysis will show 
this. We maybe have to state that the model includes an unknown number of unknown 
variables. This 'unknown number of unknown variables' is then combined into one piece, 
often called the error term.  
This situation arises e.g. when we have measurements on one interesting variable and we 
want to investigate if, and how, this variable is related to other variables. Thus we try to 
'fit' different models to measurements by some technique (most often regression analysis) 
in order to develop a model that we believe in. The fit will most likely not be perfect and 
the difference between the measurements and model we call the error or the error term. 
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Calculation of the mean value of a linear combination 
As mentioned in (4.1) we use upper case letters to designate random variables and now 
we introduce lower case letters to designate constants. If we use this convention, a 
general form of a linear combination T of the random variables W, X, Y and then 
becomes: 

 

€ 

T = a⋅W + b⋅ X + c⋅ Y + d⋅ Z  
 
 

If we use E( ) as the expected value (true mean) of a variable, we can give the following 
general expression for the mean of a linear combination: 
 

€ 

E(T) = a⋅ E(W ) + b⋅ E(X) + c⋅ E(Y ) + d⋅ E(Z)  
 

The constants a to d can be either positive or negative e.g. in example 9 some constants 
are +1 (in front of the X's) and some are –1 (in front of the Y's). If we apply this to 
example 1 we get: 
 

€ 

E(Y ) = 0.264⋅ E(Rh) + 0.240⋅ E(T)  
 

E(Y) is then the true mean of the change of length of the photo expressed in mils, i.e. 
thousands of an inch. If we prefer to use centigrade and give the answer in millimetres 
we have to write 
 

€ 

E(Y ) = 0.00671⋅ E(Rh) + 0.0110⋅ E(T) 
 

where the temperature T now is given in centigrade. If we know that E(Rh) = 6.3% and 
E(T) = 3°C then we can calculate E(Y): 
 

€ 

E(Y ) = 0.00671⋅ E(Rh) + 0.0110⋅ E(T)
= 0.00671⋅ 6.3+ 0.0110⋅ 3 = 0.075

 

 

We then expect that the mean value of the change in length (over 24 inches) is 0.075 mm. 
Note that Rh and T are measured as deviations from some target. If the deviation from 
target were zero the expression would, as expected, give the answer of zero deviation. 
Note also that the above is a theoretical result. When we later simulate this problem, we 
will not get this exact result. The reason is of course that a simulation is based on a 
limited number of measurements (not limited in the sense of small but as opposite to 
unlimited) but it will come close to the result above. 
 
 
 

Example Input Answer 
 2 E(S1) = 5.2 E(S2) = 2.2 E(S3) = 9.8 E(S4) = 3.6 E(T) = 20.8 
 3 E(Xi) = 525 lines/day 12 programmers E(Y) = 6300 
 9 k = 200 E(X) = 23.5 E(Y) = 28.6  E(T) = 179.6 
 

 

In the last example we can also note that although X, Y, and T are necessarily integers, the 
corresponding expected values need not to be integers. In (4.2.4) there are several more 
exercises. 
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The average – a linear combination 
In (4.1) we showed how the average is calculated. The average is of course also a random 
variable. Let us show this linear combination; it will be of outmost importance later on 
when we go into the concept of variation.  
 
 

€ 

X =
Xi∑

n
=
1
n
⋅ Xi∑ =

1
n
⋅ (X1 + X2 + X3 + ...+ Xn )

=
1
n
⋅ X1 +

1
n
⋅ X2 +

1
n
⋅ X3 + ...+ 1

n
⋅ Xn

 

 
 

If we replace all 1/n by the constants a1, a2, a3, ... we get 
 

€ 

X = a1⋅ X1 + a2 ⋅ X2 + a3 ⋅ X3 + ...+ an ⋅ Xn  
 

Now we have the average more clearly as a linear combination. We will return to this 
rather special combination in the next section. 
 
 

Some concluding notes 
In (4.1) we showed how the average of a number of values was calculated. We have also 
stated that this average is another random variable. However E(T), E(X), E(Z) etc are 
constants (fixed values) and we still have not discussed how these values are calculated 
in a given situation. We will wait until we have started the discussion of distributions in 
chapter 7. 
Once the idea of the expected value of a random variable is accepted, the concept of 
linear combinations and their properties is easy to understand. What we have stated so far 
in this chapter about the expected value does not depend on such things as dependence 
between variables or any special distribution. 

4.2.2  Standard deviation of linear combinations of variables 
In (4.2.1) we discussed the concept of mean value of a variable that itself is a linear 
combination of other variables. Here we add the very important idea of standard 
deviation of such combinations. In (4.1) we introduced this by some examples and also 
pointed out the difference between the standard deviation calculated from a sample of 
data and the standard deviation of a random variable. The most pragmatic way to il-
lustrate this difference is to say that the latter is the theoretical framework and the former 
is theory set in practice. (This difference we find everywhere in science: in physics there 
are a lot of theories and a lot of measures, based on a limited number of measurements, 
and it works well.) The general form of the linear combination of variables is the 
following: 
 

€ 

T = a⋅W + b⋅ X + c⋅ Y + d⋅ Z + ... 
 

Calculation of the variance 
The variance V(T) is then calculated using the following formula: 
 
 

€ 

V (T) = a2 ⋅ V (W ) + b2 ⋅ V (X) + c 2 ⋅ V (Y ) + d2 ⋅ V (Z) + ... 
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The squaring of the constants comes from the original definition of the variance, a fact 
that we do not proof. However, it is important to know that when a constant is negative 
(see example 9) its square becomes positive. The expression above assumes that the 
variables are uncorrelated; otherwise there are extra terms to be included. 
 

 

Example 1 (again) 
This example is rather good because it describes a real problem and it is easily under-
stood by most people. The model, using centigrade (T) and millimetres (Y), was 
 

€ 

Y = 0.00671⋅ Rh + 0.0110⋅ T  
 

If the variance of Rh, V(Rh), is 4.5 percent2 and the variance V(T) of T is 2.3 °C2 the 
variance of Y, V(Y), becomes 
 

€ 

V (Y ) = 0.006712 ⋅ V (Rh) + 0.01102 ⋅ V (T)
= 0.006712 ⋅ 4.5 + 0.01102 ⋅ 2.3 = 0.000480

 

 

 

Example 9 (again) 
If we apply the above reasoning on the model for the number of trouble reports after four 
weeks we get the following model: 
 

€ 

T = k + X1 + X2 + X3 + X4 −Y1 −Y2 −Y3 −Y4  
 
 

and if V(Xi) = 5.6 and V(Yi) = 7.8 we get 
 
 

€ 

V (T) = 4⋅ V (X1) + 4⋅ V (Y1) = 4⋅ 5.6 + 4⋅ 7.8 = 53.6 
 
 

If we prefer the standard deviation we take the square root of the variance. There are at 
least two things to note. First, the constant k disappeared when calculating the variance 
because a constant has no variance. The second thing is that, as mentioned before, the 
minus sign was squared and became a plus sign. 
 

Example Input Answer 
 2 V(S1) = 1.2 V(S2) = 1.1 V(S3) = 0.8 V(S4) = 0.6 V(T) = 3.7 
 3 V(Xi) = 105 lines/day 12 programmers V(Y) = 1260 
 

 

 

Standard deviation of the average 
As we showed above the average is a linear combination of random variables. This 
formulation takes some time to get used to. However, it is of outmost importance to 
understand how its variance can be calculated from the original variables. If we apply the 
ordinary rules we get 
 

€ 

V (X ) =
1
n
" 
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% 
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2
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1
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But because all observations come from the very same process their variances are equal 
so we get 

€ 

V (X ) = n⋅ 1
n
# 

$ 
% 
& 

' 
( 
2

⋅ V (X) =
1
n
⋅ V (X)  

 

and in different notations:  
 

€ 

V (X ) =
V (X)

n
        that also can be stated as        

€ 

σX =
σ
n

 

 
 

This result reflects something quite natural, i.e. the average, when calculated from 
different samples, will show a smaller variation than the original values. The relationship 
between the variance (or standard deviation) of a process and the variance (or the 
standard deviation) of averages of samples from that process, will come back many times 
in statistics. Another point is worth a remark. Sometimes one can come across a value of 
the standard deviation that seems surprisingly small. A small standard deviation is of 
course very often something to be proud of. However, if the standard deviation is calcu-
lated on averages it might be that someone is trying to hide the true standard deviation! 
A common trick to reduce the standard deviation, and thus the uncertainty, is to measure 
several times before calculating the result. This trick is used internally in many mea-
suring devices. Let us imagine that we want to measure the weight of a certain item. The 
device we use does not give exactly the same answer every time. If this variation is stated 
as a standard deviation, we can calculate how many times we have to weigh the item to 
get a specified accuracy. 
 

 

Some concluding notes 
The additive feature of the variance is very important. To decrease the total variance the 
largest source of variance should be removed first. When introducing an operation into a 
system, one must be sure not to increase the total variance too much. Sometimes one 
finds engineers that in good spirit want to decrease the total variance by introducing 
another operation that is supposed to counteract a previous operation. Let's say e.g. that 
one operation stretches the item and to compensate this, a shrinking operation is 
introduced. 
However, the shrinking operation most likely has a variance that adds to the total var-
iance unless there is a negative correlation between the stretching and shrinking opera-
tions. A negative correlation would mean that whenever an item is stretched it is shrunk 
and whenever an item is not stretched it is not shrunk. In this way we decrease the total 
variance.  
This is what happens at a final test or when we adjust e.g. some electrical feature of a 
circuit. By using some adjustable component we decrease the measured value if it is too 
high or increase it if too low. The inspector together with the component acts a random 
variable that is correlated with the circuit coming to the test. If the correlation is not 
exactly 1, the total variance will not be reduced to zero. This sounds quite natural. If the 
inspector does not read the value properly, he will either over or under compensate using 
the adjustable component and thus all circuits will not have the same electrical value. A 
final note on linear combinations is that all formulas above are correct irrespective of 
what statistical distribution that is considered (statistical distributions are discussed in 
chapter 8). However, the formulas for the variance have to include an extra term if there 
are correlations between variables. 
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4.2.3 Summary of linear combinations of variables 
 

 
Let us assume that we have the following linear combination of random variables: 
 

€ 

Y = a⋅ X1 + b⋅ X2 + c⋅ X3 + d⋅ X4  
 
 

The mean value of the linear combination 
 

€ 

E(Y ) = a⋅ E(X1) + b⋅ E(X2) + c⋅ E(X3) + d⋅ E(X4 )  
 

or with a different notation 
 

€ 

µY = a⋅ µX1
+ b⋅ µX 2

+ c⋅ µX 3
+ d⋅ µX 4

 
 

 

The standard deviation of the linear combination 
 

€ 

σY = a2 ⋅ V (X1) + b2 ⋅ V (X2) + c 2 ⋅ V (X3) + d2 ⋅ V (X4 )  
 

or with a different notation 
 

€ 

σY = a2 ⋅ σX1
2 + b2 ⋅ σX 2

2 + c 2 ⋅ σX 3
2 + d2 ⋅ σX 4

2
 

 

 Xi = the random variables of the linear combination 
  = the true mean of the random variable Xi 

  = the true standard deviation of the random variable Xi 
 

N.B. If there is a correlation between the Xi variables, the formula must contain the so-called 
covariance terms. 
 
 

Important formulas for the average value 
 

€ 

E(X ) = E(X)   or, with a different notation,   

€ 

µX = µ 
 

€ 

σX =
V (X)

n
   or, with a different notation, 

€ 

σX =
σ
n

 

 
 n = the number of values in the sample 
 µ = the true mean value of the random variable X 
 σ = the true standard deviation of the random variable X 
 
  µ and σ are calculated on theoretical grounds. See chapter 7! 

 
 


