Simulering av en diskret fördelning

Blått: teoretisk sannolikhet      Rött: simulerat resultat

Info, referenser, m.m...

Visa/dölj simulering

Visa/dölj fördelning

Visa/dölj histogram

Visa/dölj parametrar

Visa/dölj övningar

Klicka på en övning så att sannolikheter och X-värden uppdateras. Klicka sedan på [Uppdatera grafer].

Övning 1. I denna övning skapas en tvåpunktsfördelning. De två X-värdena brukar anges som 0 repektive 1. Sannolikheten för X anges ibland som enbart 'p' (kallas ibland för 'felkvot').
En beräkning av väntevärde ger just 'p' som väntevärde. Sigma beräknas som sigma = sqrt(p*(1 - p)). Detta är baserat på de vanliga formlerna för de teoretiska beräkningarna.
Medelvärde och standardavvikelse för det simulerade resultatet är också beräknade med de vanliga formlerna.
När man tar ett stickprov om 'n' detaljer ur tvåpunktsfördelningen blir sigma = sqrt(p*(1 -p)/n). (detta är sigma för skattade felkvoter.)
Notera att histogrammets 'min' och 'max' behöver antagligen ändras. Använd väntevärdet +/- 3*sigma som lämpliga värden.

Övning 2. Sannolikheter och X-värden kommer från en sk. binomialfördelning. En dylik uppstår då man tar stickprov om 'n' enheter (hur nu 'enheter' definieras i en viss situation) och där 'felkvoten' är 'p'. (Här är n = 10 och p = 0.12.)
Väntevärdet beräknas som väntevärde = n*p. Sigma beräknas som sigma = sqrt(n*p*(1-p)).

Övning 3. Sannolikheter och X-värden kommer från en sk. Poissonfördelning. En dylik används då man räknar antal 'händelser' per t.ex. tidsenhet, ytenhet, rymdenhet, etc. Mista antal är naturligtvis 0 men det finns ingen övre teoretisk gräns.
En Poissonfördelning anges med dess 'händelseintensitet' och här har använts 1.9. Vid beräkning av väntevärdet blir resultatet just denna intensitet (vilket inte är så oväntat). Beräkningen av sigma ger (via lite formler) att sigma = sqrt(intensiteten.)

••••

En diskret fördelning

Blått: teoretisk sannolikhet      Rött: simulerat resultat

Medelvärden från en diskret fördelning

Informationen till vänster används för dialogrutan "Sannolikhetsfördelning...".

Sliderna nedan används för dialogrutan "Histogram...".

(Notera att X-axelns gränser kan behöva ändras.)

Simulering av medelvärden:

Antal per stickprov

Antal stickprov